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Abstract. The goal of this paper is to show how different machine learn-
ing tools on the Riemannian manifold Py of Symmetric Positive Definite
(SPD) matrices can be united under a probabilistic framework. For this,
we will need several Gaussian distributions defined on Pg. We will show
how popular classifiers on Py can be reinterpreted as Bayes Classifiers
using these Gaussian distributions. These distributions will also be used
for outlier detection and dimension reduction. By showing that those
distributions are pervasive in the tools used on P4, we allow for other
machine learning tools to be extended to Pqy.
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1 Introduction

Symmetric Positive Definite (SPD) matrices appear in several applications of
Machine Learning (ML), such as in Brain Computer Interfaces [34], biomedi-
cal image analysis [24] or video processing [29]. More precisely, the Riemannian
structure of the set of d x d SPD matrices, denoted P,, has been leveraged to
develop a range of tools to deal with data lying on this manifold. In this work,
we use the affine invariant Riemannian framework [24], built from the follow-
ing Riemannian metric on Py, called the Affine Invariant Riemannian Metric
(AIRM) and defined on the tangent space TpPy at a point P € Py by:

YU,V € TpPq, (U, V)p Ztl"(P_lUP_l‘/). (1)

Using the geodesic induced by this geometry, one can define the AIRM distance
between two points P, Q € P, as:

§(P,Q) = || log(P~2QP~'/?)| p

The goal of this paper is to revisit some ML tools used on P, with a probabilis-
tic lens. More precisely, we will show how different probability distributions on
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Pq can be used to reinterpret classifiers, tools detecting outliers or performing
dimension reduction. We will show that all these tools can be united under the
same probabilistic framework. For this, we will start by describing, in section 2,
the different probability distributions on Py that we will use. In section 3, pop-
ular classifiers on P, will be reinterpreted using those distributions, as well as
an outlier detection tool in section 4 and dimension reduction tools in section 5.

2 Different probability distributions on the manifold of
SPD matrices

2.1 The isotropic Gaussian distribution

The authors of [26] define an isotropic Gaussian distribution G(X,¢?) on P, by
its probability density function, with respect to the Riemannian volume:

This distribution depends on two parameters: X € Py acting as the center of
mass of the distribution and ¢ > 0 acting as the spread of the distribution.
The authors also give an exact expression of the normalization constant (o)
that does not depend on X, but only on . Using proposition 7 of [26], one can
estimate the two parameters X and o of the distribution from an independent
sample X1, ..., Xy ~ G(X, ) using the Maximum Likelihood Estimator (MLE):
for X, the MLE Xy is the Riemannian mean of the sample (see [21]) and for o,
the MLE is the only solution of the following non-linear equation in o:

d 1
3 4 _ N2
o e log ¢ (o) N;:1 0(X;, Xn)°.

2.2 Wrapped distributions

We now share a way to define an anisotropic Gaussian distribution on the
manifold Py using the concept of wrapped Gaussian (WG) distribution [11].
This distribution depends on three parameters: P € Py, u € RHIHD/2 and
Y € Py(a+1)/2- Then, we say that the random variable X on Py follows a wrapped
Gaussian distribution WG(P; u, X) if:

X = Expp(t), t ~ N (1, Z)

The wrapped Gaussian corresponds to a multivariate Gaussian distribution
N(u,Y) in normal coordinates at P. This distribution is further analyzed in
[28]. In particular, the density of WG(P; u, X) is given by:

_ 9gu.x(Logp(X))
|

fPypo(X) = |Jp(Logp(X))
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where g, 5 is the density of the multivariate Gaussian N (p, X)) and Jp(-) =
det(dExpp(+)) is the Jacobian determinant of the exponential map Expp. The
closed-form formula of the Jacobian determinant Jp is given in Proposition 4.3
of [28]. Moreover, the authors show that the parameters (P, p, X) of the WG
can be estimated from a sample X7, ..., Xy using the method of moments in the
case of =0 a priori and using an MLE in a general setting where p # 0.

2.3 Other probability distributions on Py

An alternative definition of an anisotropic Gaussian distribution on Py is given
in [22]. This approach maximizes entropy given a mean and covariance matrix
(see Theorem 13.2.2 of [17]). On Py, the entropy-maximizing distribution with
mean X and concentration matrix I" has density:

Logg(X)'T Logx(X)>
2 b

px.r(X) =kexp (—

where k is a normalization constant without a closed form. The relation between
I' and the covariance X is given in Theorem 3 of [22]. When X = 021, this
reduces to the isotropic Gaussian of section 2.1. Another example of a Gaussian
distribution of Py is given in [8], where the author uses Souriau’s covariant Gibbs
density to compute a Gaussian density of SPD matrices.

Other - non-Gaussian - probability distributions have been defined on the
manifold P, of SPD matrices. For example, a famous distribution used for SPD
matrices is the Wishart distribution [32]. It is the distribution of sample covari-
ance matrices of random vectors drawn from a multivariate Gaussian distribution
and can be seen as a generalization of the gamma distribution to multiple di-
mensions. This Wishart distribution was first extended in [3] to the t-Wishart
distribution similarly to the way the multivariate ¢-distribution extends the mul-
tivariate Gaussian. In [4], the authors extend the Wishart distribution to an
elliptical version, leading to a more robust and flexible distribution. In [1], the
authors describe a Cholesky normal distribution on the manifold of SPD matri-
ces. This distribution is related to the Wishart distribution as it relies on random
vectors drawn from a multivariate Gaussian distribution. Moreover, the authors
show that the Wishart distribution is approximately the Cholesky normal dis-
tribution for large degrees of freedom.

3 Application to classification

In this section, we show that popular classification algorithms on Py can be rein-
terpreted in the light of a probabilistic framework using the different Gaussian
distributions defined in section 2.1. In the following, we assume that we are in
a supervised setting where we have K classes each modeled by a distribution
denoted ay. We start by introducing the Bayes Classifier (BC) :
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Definition 1 (Bayes Classifier (BC) [10]). Given K classes each modeled
by a distribution ax, a Bayes Classifier (BC) assigns a new sample Z to the
class k that maximizes the likelihood of Z under the distribution ay.

Our goal is to show that popular classification algorithms on P, can be
interpreted as BC using the different Gaussian distributions defined in section 2.
We will focus on the Minimum Distance to Mean (MDM) algorithm [7], on the
Tangent Space Linear Discriminant Analysis (LDA) and on the Tangent Space
Quadratic Discriminant Analysis (QDA) algorithms [5].

3.1 Minimum Distance to Mean (MDM)

The Minimum Distance to Mean (MDM) algorithm is a simple and popular
classification algorithm for SPD matrices described in [7]. Given a training set
of SPD matrices, this algorithm estimates the Riemannian mean X* for each
class k € {1,..., K} and assigns a new sample Z to the class k that minimizes
the Riemannian distance to the estimated mean X*. We can reinterpret the
MDM algorithm in the light of the isotropic Gaussian distribution defined in
section 2.1. Indeed, we have the following:

Proposition 1. Let us suppose that each class is modeled by an isotropic Gaus-
sian distribution centered at X* with a shared o, i.e. oy, = G(X*,0?), then, the
MDM converges to the BC when the number of data tends to infinity.

When the number of data tends to infinity, the estimation of the Riemannian
mean of each class X* converges to the true mean of the k-th class X*. Here,
the spread o does not play any role in the classification, so one only needs to
estimate the Riemannian mean X* of each class.

3.2 Tangent Space LDA/QDA

The Tangent Space LDA (resp. QDA) algorithm is a generalization of the LDA
(resp. QDA) algorithm to the manifold of SPD matrices introduced in [5]. The
idea is to first estimate the Riemannian mean Xy of the whole training set,
and then project the training SPD matrices onto the tangent space T’y Py.
This tangent space being Euclidean, one finally applies the classical LDA (resp.
QDA) algorithm (see section 4.3 of [13]) in this tangent space. Using the wrapped
Gaussian distribution described in section 2.2, one has the following proposition:

Proposition 2. When the number of data points tends to infinity, the Tangent
Space LDA converges to a BC where the classes are modeled by wrapped Gaussian
distributions centered at

X =argmin [ §(X,Y)%da(X)
YeEPq Pa

where o = %Zle ay, is the total distribution, and with a shared covariance
matriz X, in other word, ap = WG(X, pg, X). Similarly, the Tangent Space
QDA converges to a BC where the classes are modeled by o, = WG(X, g, Xy ).
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Here, X is the Fréchet mean of total distribution as defined in definition 2 of [23]
and can be estimated by the Riemannian mean X of the training data. Then,
estimating p and Xy boils down to the Euclidean estimation of the mean and
covariance matrix in 7'y P4. One can use wrapped Gaussian to build new BC on
P4 by modeling the classes oy by WG(Xy, ug, X) or by WG(Xg, g, Xk ). This
is done in [28]. These algorithms project each class to their own tangent space
whereas only one tangent space is used in the Tangent Space LDA/QDA.

3.3 Other probabilistic classifiers for SPD matrices

In this paper, we mainly focus on the different Gaussian distributions described
in section 2. However, other authors have inquired BC based on other proba-
bility distributions. For instance, in [4], the authors propose a BC based on the
Elliptical Wishart distribution. They also adapt it to an unsupervised clustering
scenario leveraging the K-means clustering algorithm. In [3], the authors show
that if the metric used in the MDM algorithm is based on the Kullback-Leibler
divergence between two centered multivariate Gaussian distributions, then, the
MDM algorithm is a BC based on the ¢t-Wishart distribution.

4 Application to outlier detection: Riemannian potato

Another tool that is used when the SPD matrices are covariance matrices of
ElectroEncephaloGraphy (EEG) signals is the Riemannian potato introduced in
[6]. This tool is used to automatically detect outliers in the data. The idea of
the Riemannian potato is to estimate a reference SPD matrix and a measure of
dispersion (z-score), and then to reject all SPD matrices that are too far from
the reference matrix. Let (X;);=1,... n be a set of SPD matrices, and let us denote
X the reference SPD matrix. Then, the z-score z of X € P, is computed as:

1 < _

N

= D) T Ghere = %Zé(X“X) and o0 = i Z(é(Xi,X) — 2.
i=1 i=1

Provided a threshold z,, the matrix X is accepted if z < z;,. The Riemannian
potato is a simple yet efficient tool to detect outliers in the data. In practice, the
reference matrix X is a Riemannian mean computed iteratively as new samples
are added to the dataset. Using the isotropic Gaussian distribution defined in
section 2.1, we can see that the Riemannian potato rejects points that are too
unlikely under a certain isotropic Gaussian:

Proposition 3. Let X € Py be a reference matriz, ;1 € R,0 > 0 and zy, > 0.
Then, X € Pq is accepted by the Riemannian potato with threshold zy, if and
only if Lg ,(X) > Ly, where Lz , denotes the likelihood of G(X, o) and where

Ly, = exp (—; (Zth + 'Z))
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Fig. 1. Results of the Riemannian t-SNE and PCA algorithms applied to the covariance
matrices of EEG signals from subject 8 of the BNCI2014001 [18] dataset. The points
are colored according to the class of the task performed by the subject. Both algorithms
reduce the data to 2 x 2 SPD matrices, which can be visualized in 3D. Indeed, a 2 x 2

SPD matrices is of the form (Z ﬁ), which can be represented in 3D by the point
(a,b,¢).

Riemannian potato have been extended to a Riemannian potato field [9].
Another use of the isotropic Gaussian distribution to detect outliers is done in
[31] where the author built an online change detection algorithm based on the
estimation of the Riemannian mean of the data before and after the change.

5 Application to dimension reduction

5.1 Riemannian t-SNE

In [27], the authors define a Riemannian version of the t-SNE algorithm from
[20] that reduces d x d SPD matrices into 2 x 2 SPD matrices. As the set Py
of 2 x 2 SPD matrices is of dimension 3, it can be visualized in a 3D space.
To adapt the algorithm to the manifold Py, the authors replaced the Euclidean
distance by the AIRM distance and showed that the algorithm is still valid.
The Riemannian t-SNE algorithm is based on the computation of similarities
between the high-dimensional SPD matrices using a Gaussian kernel. This kernel
is based on the isotropic Gaussian distribution defined in section 2.1. Denoting
Xi,..., Xy the set of high-dimensional SPD matrices, the similarity p;; of the
matrix X; to X; is the conditional probability p;; that X; would pick X; as
its neighbor if they were picked in proportion to their probability density under
an isotropic Gaussian G(X;,0?) centered at X;. The dispersion o; is computed
using the perplexity parameter of the t-SNE algorithm. Then, the Riemannian
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t-SNE aims at learning Y7, ..., Yx € P, i.e., the SPD matrices with the reduced
dimension, that reflect the similarities p;; as well as possible. For this, the joint
probabilities ¢;; of the low-dimensional SPD matrices Y; and Y are computed
using a Riemannian version of the Student-t distribution with one degree of
freedom. Finally, the Kullback-Leibler divergence between the two distributions
is minimized using a Riemannian gradient descent algorithm.

We apply this Riemannian t-SNE to a dataset of SPD matrices that are co-
variance matrices of EEG signals used in Brain Computer Interfaces. The dataset
is the BNCI2014001 dataset [18] from MOABB [2] that contains 9 subjects per-
forming motor imagery tasks. The Riemannian t-SNE algorithm is applied to
the covariance matrices of the EEG signals of subject 8 of the dataset, and the
results of given at fig. 1. The Riemannian t-SNE algorithm reduces the data
to 2 x 2 SPD matrices, which can be visualized in 3D. The points are colored
according to the class of the task performed by the subject. The Riemannian
t-SNE algorithm is able to separate the different classes of tasks performed by
the subject, showing that it is a good tool for dimension reduction on Py.

5.2 Riemannian PCA

The goal of the Principal Component Analysis (PCA) algorithm is to project
the data onto a lower-dimensional space while maximizing the variance of the
projected points. In [14], the authors extend the PCA to a Riemannian setting
of SPD matrices. Given a set X1, ..., Xy of SPD matrices, their goal is to find a
W that maximizes the variance of the projected points W T X W, ..., W T XyW.
The matrix W is chosen in G(d, p), the Grassmann manifold, that is the manifold
of d x p matrices of rank p. This is to make sure that the projected points
are SPD matrices. Therefore, the Riemannian PCA is defined as the following
optimization problem, where XN is the Riemannian mean of the set X1, ..., Xn:

N
W e argmax > S(W'X;W, W T XyW)?
Weg(d,p) im1

We recall that the variance of a distribution p on Py, at a point X, as defined
in 23], is 0*(X) = [, 6(X,Y)?du(Y). In the discrete setting of Riemannian
PCA, the integral is replaced by a sum. Therefore, the underlying distribution of
the Riemannian PCA is the isotropic Gaussian distribution defined in section 2.1.

We also apply this Riemannian PCA algorithm to the same dataset of co-
variance matrices of EEG signals used in the Riemannian t-SNE algorithm. The
results are given at fig. 1. As the Riemannian t-SNE, we reduce the covariance
matrices to 2 x 2 SPD matrices, which can be visualized in 3D. The Riemannian
PCA algorithm also demonstrates the ability to separate the different classes
of tasks performed by the subject, confirming its effectiveness for dimension
reduction on Pj,.
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6 Conclusion

In this paper, we first demonstrated how the isotropic Gaussian distribution
and the wrapped Gaussian distribution can be used to reinterpret the MDM,
Tangent Space LDA and Tangent Space QDA classifiers as Bayes Classifiers.
Therefore, these algorithms share a common probabilistic framework, differing
only in their choice of data distribution. Using the same framework, we showed
that the Riemannian potato rejects points that are unlikely under an isotropic
Gaussian distribution. Finally, the Riemannian t-SNE and the Riemannian PCA
algorithms were also encompassed in the same probabilistic framework. This
work shows that the various tools used on the manifold of SPD matrices can be
brought together under the same probabilistic framework.

This work opens the door to using other probability distributions on P, and
constructing other ML tools using them. For example, a possible use of the
different Gaussian distributions is the construction of Gaussian kernels on Py.
Kernels on P, have already been investigated [33, 16], and the use of the isotropic
Gaussian distribution to build a kernel leads to a strong limitation due to the
curvature of Py (see [12]). However, the wrapped Gaussian distribution could
lead to a more flexible kernel that could be used in a wide range of applications.
Deep Learning methods have also been investigated on Py [15,19,30], and the
use of the different probability distributions could lead to a new outlook on deep
models on Py. On more general Riemannian manifolds, the isotropic Gaussian
has for example been used to extend Variational Flow Matching to Rieman-
nian manifolds in [35] and wrapped distributions have been leveraged to learn
Riemannian latent spaces in [25].
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