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Abstract—The goal of this paper is to leverage more infor-
mation from a single measurement (e.g. an ElectroEncephalo-
Graphic (EEG) trial) by representing it as a trajectory of
covariance matrices (indexed by time for example) instead of
a single aggregated one. Doing so, we aim at reducing the
impact of non-stationarities and variabilities (e.g. due to fatigue
or stress for EEG). Covariance matrices being symmetric positive
definite (SPD) matrices, we present two algorithms to classify
trajectories on the space of SPD matrices. These algorithms
consist in computing, in two different ways, the mean trajectory
of a set of training trajectories and use them as class prototypes.
The first method computes a pointwise mean and the second one
achieves a smart matching using the Dynamic Time Warping
(DTW) algorithm. As we are considering SPD matrices, the
geometry used along these processes is the Riemannian geometry
of the SPD matrices. We tested our algorithms on synthetic data
and on EEG data from six different datasets. We show that our
algorithms yield better average results than the state-of-the-art
classifier for EEG data.

Index Terms—Brain-computer interfaces, Covariance matri-
ces, Electroencephalography, Riemannian geometry, Time series
analysis

I. INTRODUCTION

Covariance matrices have achieved great successes in many
scientific areas such as Brain-Computer Interfaces (BClIs)
[1], process control [2] or biomedical image analysis [3].
In this paper, we will focus on applications for BCIs where
the goal is to translate brain signals into commands. Non-
invasive BCIs mainly use ElectroEncephaloGraphic (EEG)
signals recorded using a cap equipped with multiple sensors
[4]. The recorded EEG takes the form of a multivariate time
series. One can compute the covariance matrix of this signal to
better understand the link between the different sensors. The
goal is to detect and classify specific patterns in the EEG and
to link them to specific commands. In a Motor Imagery (MI)
paradigm [5], the subject is, for example, asked to imagine
moving his right or left arm and the goal is to discriminate
EEG patterns corresponding to those two different classes.

Covariance matrices have a special structure: they are sym-
metric, positive definite (SPD). Thus, the natural geometry to
manipulate them is the affine invariant Riemannian geometry
[6]. This geometry leads to a curved space, where the shortest
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path between two SPD matrices is not a straight line, but
rather a geodesic. It has been shown that using this Rie-
mannian geometry leads to state-of-the-art EEG classification
performances [1], [7]. The seminal work [8] introduces an
algorithm called Minimum Distance to Mean (MDM) that uses
the tools of Riemannian geometry on SPD matrices in order
to classify SPD matrices and therefore, covariance matrices
of EEG signals. To achieve this, a mean SPD matrix is first
estimated for each class from the training data. Then, given a
new SPD matrix, the predicted class is the one for which the
mean matrix is the closest to the given SPD matrix, where the
distance is the Riemannian distance on the SPD manifold.
Our goal is to extend this approach. In fact, it is well known
that EEG recordings are subject to numerous variabilities
[9], [10] from the environmental conditions, the subjects’
cognitive states (interdays or intersubject variabilities), their
fatigue or the task requirements. The representation using
covariance matrices might fail to capture those variabilities
as they are not able to capture neither temporal dynamics
nor frequency information. Therefore, we propose in our
work to extend the MDM algorithm [8] by not only using
one SPD matrix per EEG trial (its covariance), but several
SPD matrices per trial, forming a trajectory (e.g. covariance
matrices across time). We then compute a mean trajectory
per class instead of a single mean matrix. This way, we
hope to leverage more information out of a single EEG trial
and therefore, better tackle the variabilities and the non-
stationarities. We propose two methods to compute the mean
trajectory, on the one hand using a point-wise mean, and on
the other hand based on an optimal matching computed using
the Dynamic Time Warping (DTW) algorithm. Considering
trajectories of covariance matrices has already been proposed
to classify brain signals. In [11], they build their trajectories
using the discrete Fourier transform and learn an optimal
distance between trajectories based on a weighting matrix to
classify EEGs. In [12], they build trajectories by estimating a
covariance matrix on a sliding window then build a distance on
trajectories of SPD matrices. They also propose a dimension
reduction algorithm to facilitate the computations and apply
it to functional MRI. In [13], the considered trajectories on
a Riemannian manifold are geodesics that derive from an
unknown group-average trajectory. None of these previous
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works try to extend the MDM algorithm by computing a mean
trajectory and comparing a new sample to this mean trajectory.

The paper is organized as follows: in Section II, after
some reminders on the Riemannian geometry of SPD matrices
and on the DTW algorithm, we present our two algorithms:
PT-MDM (for Pointwise Trajectory-MDM) and DTW-MDM.
Theses methods are tested on synthetic datasets and on real
BCI datasets in Section III.

II. PROPOSED METHODS
A. The Riemannian geometry of SPD matrices

We consider the set P, of symmetric, positive definite (SPD)
matrices of size ¢ X c¢ defined as follows:

P.={PcR>|PT =P VrcRst. x #0, ' Pz >0}

This set can be seen as a Riemannian manifold of dimension
¢(c + 1)/2. We can define a distance between two SPD
matrices. In this paper, we use the affine-invariant metric [14]:

Sr(Pr, P2) = | log(P; PPy )| (1)

where |||| ¢ is the Frobenius norm and log the matrix logarithm.

Provided with n SPD matrices Py, ..., P, € P., one may
need to compute the mean of these matrices. The Riemannian
mean [15] is defined as follows:

®(Py,...P,) = argminZéIZ%(P,Pi) )
PEP. i3
The Riemannian mean exists and is unique in the case of
a manifold of non-positive sectional curvature [16] (such as
the manifold of SPD matrices) however, there is no closed-
form expression of it. One can use a Riemannian gradient
descent algorithm to find an approximate solution [6]. We
used Pymanopt [17] to solve such Riemannian optimization
problems in Python.
B. Dynamic Time Warping
Dynamic Time Warping (DTW) [18] is a well-known al-
gorithm used to find the optimal alignment between two
time series. Let X = (z1,..,zy) and Y = (y1,...,ynm)
be two sequences of size respectively N and M and let £
be a cost function. The DTW algorithm computes a path
P = ((il,j1)7 ey (iKpaij)) S (NXN)KP7 Kp € Nbetween
the elements of X and of Y that minimizes the sum of cost:

Kp
w(P) = Zﬁ(zzmyjk)
k=1

An acceptable path P = ((i1,51), -, (ikp,ikp)) € (N X
N)X7 Kp € Nis a sequence that is continuous (i —iz_; < 1
and ji — jrk—1 < 1), monotonic (ix—1 < i and jr—1 < ji)
and bounded ((i1,71) = (1,1) and (ik,,jxp) = (N, M)).
The final DTW distance is computed as follows:

DIW(X,Y) = glill_ll w(P)
€

where II is the set of acceptable paths. The minimizing
path can be computed in O(N M) operations using dynamic
programming [19]. A linear in time and space algorithm called
FastDTW [20] have been developed to approach the DTW.

Fig. 1. Example of a matching using the DTW-MDM method. Training

trajectories {Xf}i}’:_’:’g are in black and the mean trajectory X is in

red. The blue dashed lines represent the matching computed by the DTW
t,t

algorithm. Equation 3 is then used to compute the weights a;

C. The two proposed algorithms

In this work, we want to consider trajectories of SPD
matrices, such as trajectories of covariance matrices indexed
by time or frequency for example. Let us consider IV training
trajectories of SPD matrices of length 7" denoted {Xf}ij%
where X! € P, is the t-th matrix of the i-th trajectory. Our
goal is to find the mean trajectory X = {X!}=L--T We
propose two different methods to do this'.

First method: PT-MDM: The first method is called PT-
MDM for Pointwise Trajectory-MDM. 1t is the natural way of
thinking of a mean trajectory: each point of the mean trajectory
X is the pointwise Riemannian mean (see Eq. 2) of the
corresponding points of the training trajectories {X;};=1, . n:

N
vte{l,..,T}, X'= argmianS]z%(X, X5.

XePe i
Second method: DTW-MDM: The second method is
called DTW-MDM and uses the DTW algorithm to align
trajectories in order to take into account possible variabilities
such as time shifts, dilatation or contraction of time. This
algorithm is iterative and, after randomly generating the initial

mean trajectory X, it iterates two steps until convergence:

1) A matching is computed between each of the training

trajectories { X! }*=1T and the current mean trajectory
tt'=1,..,T
i=1,...,

X. This step gives a set of coefficients {a’" }
where the coefficient o/ represents the influence of
X! on X'

2) A weighted Riemannian mean is computed:

N T
vt : t,t 52 t/
X fargmlng E o 0n(X, Xy)

To find the coefficients {aﬁ’t/}fillz”l_"]'\',’T, we use the DTW,
presented in II-B, with the cost £ béirfg the squared Rieman-
nian distance 6%. Indeed, for all ¢ € {1,..., N}, the DTW
algorithm gives a path P; = ((t},t1), ..., (%, tK,)) that
matches { X! }*'=1T to X = {X*}*=1-T Using this path,
one can construct the weights {aﬁ’t/}t’tlzl"“’T:

IFind our code at https:/github.com/thibaultdesurrel/Trajectory-MDM
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1
_ - if (¢,t) € P,
@ @oepy T &)

0 otherwise

t,t

where |A| is the cardinality of the set A. The coefficient
aﬁ’t/ is therefore the inverse of the number of points that are
linked to X* by the DTW. We show an example in Figure
1. An important feature of our method is, since the DTW
algorithm can process time series of varying lengths, we have
the possibility of having less points on the mean trajectory
X than on the training trajectories. This can possibly help to
summarize the information and reduce the noise of the training
trajectories. Two criteria are used to check convergence: a
maximum number of iterations is given as well as a threshold
for the norm of the difference between two consecutive mean
trajectories. For all of our experiments, we used a maximum
number of 10 iterations and a threshold of 107>,

Classification: For training a classifier using either these
methods, we start by computing the mean trajectory X, for
each class k using either the pointwise or DTW method.
Once the mean trajectories are computed, for classifying a
new trajectory X, the distances (computed pointwise or using
the DTW based on the method used to compute the mean
trajectories) between X and the mean trajectory of each class
X} is computed. The class k for which the distance is the
minimum is returned.

III. NUMERICAL EXPERIMENTS

After describing the algorithms that we propose, we can
test them. We now show some experiments, first on synthetic
datasets and then on real data.

A. Synthetic experiments

1) Data generation: To build a synthetic dataset we start
by sampling two matrices M; and My using the spectral
decomposition: M; = UlTDl Uy (resp. My = UJEDNUN)
where the diagonal matrix Dy € R*¢ (resp Dy) has strictly
positive values drawn from a uniform distribution ([0, 5]) and
where the orthogonal matrix Uy (resp. Uy ) is drawn from the
O(c¢) Haar distribution (the only uniform distribution on O(c))
[21]. These two matrices are the beginning and end points of
the underlying trajectory. We can then sample Mo, ..., Mn_1
uniformly along the geodesic going from M; to My and add
some Gaussian noise to them (we sample 1; ~ N (0, %Ic) and
add p;ul to M;). This will give us the “true” trajectory for
the first class. For the second class, we simply modify one
matrix M; among the first underlying trajectory Mo, ...Myn_1
by adding another SPD matrix sampled like M; and My
(with eigenvalues drawn uniformly in [0,1]). We get a new
matrix M; and the underlying trajectory for the second class is
(My, ..., M;_q, M;, M, ..., My). At this step, we have the
underlying trajectory of both classes. We then wish to mimic
the randomness that occurs while measuring real life data. For
each class, we sample n trajectories of [ points that follows
the corresponding underlying trajectory. To do this, for a given
trajectory, we start by sampling uniformly [ times ¢1, ..., %; in
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Fig. 2. Results on the synthetic datasets.

Dataset Number Number | Number | Sampling | Trial
of subjects | of channels | of trials | frequency | length
BNCI2014001 [22] 9 22 144 250Hz | 3s
BNCI2014002 [23] 15 15 80 S512Hz | 5s
BNCI2014004 [24] 9 3 360 250 Hz | 45s
BNCI2015001 [25] 12 13 200 S512Hz | S5
Zhou2016 [26] 4 14 160 250 Hz | 5
AlexMI [27] 8 16 20 S512Hz | 3s
TABLE I

SUMMARY OF THE DATASETS CONSIDERED DURING THE STUDY

[0,1]. This gives us the times at which we “recorded” a new
point on the trajectory. Then the ;' point on the trajectory is
sampled on the geodesic between M i and M i1 where ¢ is

such that ﬁ <t < % Finally, we add a Gaussian noise
(with the same parameters as above) to all the samples points.

2) Influence of the parameters: In this experiment we com-
pare the two algorithms PT-MDM and DTW-MDM presented
in Section II with each other. We also compare them with a
classical MDM algorithm, where we summarize all the infor-
mation of a trajectory to its Riemannian mean and compute
a unique SPD mean matrix for each class. The Riemannian
distance is then used to classify a new matrix. We want to see
if considering trajectories is better than considering a single
SPD matrix, and to compare a smart matching using the DTW
to a trivial one (DTW-MDM vs PT-MDM). The parameters
investigated are: the number [ of points on the trajectories, the
dimension c of the matrices, the additive Gaussian noise ¢ and
the distance between the two classes . The base parameters
are: [ =10, c = 2, e = L. We chose N = 5 matrices on the

2
underlying trajectories throughout the experiments.
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Fig. 3. From a EEG to a trajectory. Each point on the trajectory is a covariance
matrix computed on a sub-window of size size_window of the EEG.

We show the results for the parameter ¢ and § in Figure
2. Each point is the mean accuracy of a classifier over 5
simulations. We can see that the two proposed algorithms are
better than the classical MDM almost all of the time and that
the DTW-MDM is always better than PT-DTW. It is also the
case for the experiments for the parameters | and ¢ that are
not shown because of page limitation. Therefore, we can say
that having a matching computed using the DTW algorithm
is worth it, and actually performs better than a simple MDM
or than a pointwise matching. We also did some experiments
where the distances used where the Euclidean one and the
results (not shown here) revealed that is was better to consider
the Riemannian metric of Eq. 1 to compare SPD matrices.

B. Experiments on BCI dataset

We conducted some experiments on real BCI datasets
using MOABB [28]. We selected 6 different motor imagery
datasets consisting of several subjects for each dataset and
several sessions for each subject, all with balanced classes.
A summary of all the datasets is given in Table I. We start
by applying a standard band-pass filter with range [7;35] Hz
for each dataset. To compute the covariance matrices, we used
the Ledoit-Wolf shrunk covariance matrix [29] to avoid having
problems with ill-conditioned matrices.

a) Creating a trajectory given an EEG: To create a
trajectory of SPD matrices from an EEG trial, we cut the
EEG trial into smaller windows of size size_window (a
hyperparameter) and compute a covariance matrix for each
window. Therefore, we have several SPD matrices for each
EEG trial. This procedure is illustrated in Figure 3. For the
DTW-MDM algorithm, we also have a second hyperparameter
size_mean_traj that controls the number of points on
X because, as said in Section II-C, when using DTW-MDM,
the mean trajectory can have fewer points than the training
trajectories. Once the training trajectories have been computed,
we apply a Fisher Geodesic Discriminant Analysis (FGDA)
filter [30] to all of the covariance matrices. We have one filter
per class that has been fitted on all the covariance matrices of
all the trajectories corresponding to each class. We can then
compute the mean trajectory X and classify some new EEG.

b) The results: We conducted experiments both intrasub-
ject, where for each subject, the dataset was split into 80%

Method Time to train the classifier Average time to classify
a new EEG

FgMDM 0.60 sec 0.0006 sec

PT-MDM 1.17 sec 0.004 sec

DTW-MDM | 61.7 sec 0.007 sec

TABLE II
COMPUTATIONAL TIMES ON DATASET ZHOU2016 [26].

training and 20% testing, and intersubject, where we trained
on every subject except one and tested on the last subject.
The results of both methods are given in Table III and are
compared to the FgMDM, that is a MDM classifier with a
FGDA filter as presented in [30]. The two hyperparameters
size_window and size_mean_traj were optimized for
each dataset based on the training data and the accuracy is
the mean accuracy over all subjects that was cross-validated
over 5 folds. We can see that, on real datasets, both proposed
methods are almost always better than the FgMDM that has
only one covariance matrix. However, it is not clear whether
PT-MDM or DTW-MDM is overall better on real data, even if
PT-MDM seams to be slightly better on the tested datasets.

The hyperparameters size_mean_traj as well as
size_window are not consistent throughout all datasets and
must be optimized for each one. However, the best sizes for
the windows that are extracted from an EEG trial are always
around one second (from 0.75 sec to 1.3 sec), and the EEG
trial length being between 3 and 5 seconds. This corresponds
to 3 to 6 points on the training trajectories. We observed that
the DTW-MDM classifier works better when there is one or
two fewer points on the mean trajectory than on the training
trajectories. This could be explained by a smoothing effect,
that reduces the noise present in the original data. What we
also noted is that, most of the time, the best hyperparameters
where the same for a same dataset, whether or not we were
doing intersubject or intrasubject classification.

¢) Computational time: For the dataset Zhou2016 [26],

we give the computational times of the different algorithms
in Table II. As expected, one can see that the two proposed
methods take longer to train than the usual FeMDM. One can
also see that the DTW-MDM is the longest to train. This is
not surprising as instead of computing a single mean SPD
matrix, our algorithms compute a whole mean trajectory, with
a complex algorithm for the DTW-MDM. However, once the
classifier is trained, classifying a new EEG is very fast (~
103 seconds), making the proposed algorithms well suited
for online real-time classification, see, e.g., [31].

IV. FUTURE WORKS

Future works could try to use a differentiable version of the
DTW as introduced in [32] to have a fully differentiable loss.
Another track could be to use optimal transport to transport the
training trajectories onto the mean trajectory and then using
the transport plan to compute the coefficients {a?’t, }f:t;:l 'J'\‘,’T.
We would also like to understand why, although the DTW-
MDM seems to perform better on synthetic datasets, it is not

always the case on real BCI datasets.
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Intrasubject

Intersubject

|
|| Accuracy FgMDM |

Accuracy DTW-MDM [ Accuracy PT-MDM |

81.6 % (£ 1.6)

634 % (£ 0.9)

654 % (£ 1.3)

66.9 % (£ 1.5)

80.6 % (£ 1.6)

611 % (£ 1.5)

62.7 % (£ 2.2)

627 % (£ 1.9)

753 % (£ 1.3)

65.6 % (£ 0.0)

689 % (£ 0.7)

691 % (£ 0.8)

86.5 % (£ 1.0)

56.2 % (£ 0.4)

59.0 % (£ 0.7)

59.0 % (£ 0.8)

89.0 % (£ 0.5)

761 % (£ 0.8)

T4 % (£ 0.7)

78.1 % (£ 0.6)

837 % (£ 0.4)

701 % (£ 1.1

71.5 % (£ 0.8)

712 % (£ 0.8)

Dataset | Accuracy FgMDM [ Accuracy DTW-MDM [ Accuracy PT-MDM
BNCI2014001 80.5 % (£ 1.2) 81.8 % (£ 1.7)
BNCI2014002 78.5 % (£ 1.6) 793 % (£ 1.4)
BNCI2014004 73.8 % (£ 1.0) 741 % (£ 13)
BNCI2015001 85.5 % (£ 0.8) 85.1 % (£ 1.1)
Zhou2016 86.5 % (£ 0.7) 884 % (£ 0.5)
Zhou2016 (3 classes) | 824 % (£ 0.6) 838 % (£ 03)
AlexMI 771 % (£3.0) 765 % (£ 3.6)

762 % (£ 3.0)

578 % (£ 1.3)

587 % (£ 1.3)

593 % ( £ 1.9)

TABLE III

RESULTS ON BCI DATASETS

V. CONCLUSION

In this paper we presented two new approaches to the MDM
algorithm to classify EEG: instead of considering a single
SPD matrix per EEG trial, we computed a trajectory of SPD
matrices indexed by time for each EEG trial. We first tested our
algorithms on synthetic datasets, to assess their performances.
This study concludes that finding a smart matching and using
it in a weighted average was better than just computing a
pointwise average. Finally, we tested our algorithm on real BCI
datasets, both intrasubjects and intersubjects. In both cases,
the proposed algorithms performed better, on average, than
the state of the art FgMDM algorithm. In our experiments,
we considered trajectories indexed by time, however, the two
proposed algorithms can work with any type of trajectories of
SPD matrices, no matter how the trajectory is indexed.
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